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Feeding n-3 fatty acids (FA) is often cited as a promising strategy to tackle impaired reproduction in dairy
cows. However, the scientific literature shows conflicting results that may be explained by the nature of
n-3 FA used, the amount supplemented and the timing of supplementation. In addition, designing a
proper experimental design to study n-3 FA and reproduction is subjected to other difficulties such as the
choice of the control diet or gaining enough statistical power. The objective of this retrospective
observational study was to quantify the average effects of supplementing extruded linseed (EL), a feed
rich in a-linolenic acid, to dairy cows on reproductive performances under field conditions in French
commercial farms. Exposure measurement to EL feeding was particularly challenging as exact cow diets
are not traced in farms. Therefore, to investigate the potential dose-effect relationship, we defined a
proxy of EL intake per day by using deliveries of EL based feeds from 22 companies in the study period
2008e2015 in France. An artificial insemination (AI) was considered exposed only if the cow was sup-
plemented with EL from the calving until 17 days after AI. Based on recommendations for EL use on the
field, 4 exposures classes were created: [1e50] (n¼ 14,126 AIs), [50e300] (n¼ 88,261 AIs), [300e600]
(n¼ 66,136 AIs), and [600-1500] (n¼ 28,287 AIs) g/cow/d. The reference population was composed of
cows that did not receive any EL between calving until 17 days after AI within herds that were supplied,
but not continuously during the study period (n¼ 226,795 AIs). Mean daily EL intake in exposed pop-
ulation was 337 g/cow/d (±239.4). Reproductive performance was studied on 423,605 AIs from 1096
herds and 158,125 cows using Cox models for days to first AI and days to conception, and logistic
regression models for risk of return-to-service, adjusted for factors likely to influence the reproductive
performance and for a herd random effect. Risk of return-to-service between 18 and 78 days after first
and second AI did not differ between exposed and reference populations, Nevertheless, the effect on the
days to first AI was higher with the lowest EL intake (HR: 1.14; 95% CI: 1.11, 1.17) than with higher EL
intake levels (HR ranging from 1.06 to 1.07; 95% CI: 1.04, 1.09). Similarly, for the effect on the time from
calving to conception from the lowest EL intake (HR: 1.19; 95% CI: 1.15, 1.23) compared to the higher EL
intake levels (HR ranging from 1.08 to 1.11; 95% CI: 1.06, 1.14). This original large-scale epidemiological
study provides new insights into the effects of feeding EL at a commercially sustainable level to dairy
cows.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The deterioration of the reproductive performance of dairy cows
is one of the main concerns of the modern dairy industry because it
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is closely linked to the profitability of the dairy farm [1]. The length
and depth of negative energy balance (NEB) post-partum are major
risk factors for poor fertility [2,3]. Improving fertility and energy
status of the cowby adding fat to the diet could be a sustainable and
cost-effective lever. Indeed, fat supplementation increases the en-
ergy content of the diet. However, large amounts of fat were found
undesirable for the rumen function [4]. Besides, fat supplementa-
tion seldom improves the energy status of the cow [5] and could
even aggravate the metabolic pressure on the cow in early post-
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partum by stimulating milk production [6]. The impact of supple-
menting dairy cows’ diet with fat on reproduction still remains
inconsistent and conflicting notably due to the nature of the sup-
plements [6,7].

Targeting some fatty acids (FA) in reproductive tissues, in
particular n-3 polyunsaturated fatty acids (PUFA), could improve
reproduction in different ways such as accelerating the resumption
of the post-partum ovarian cyclicity and follicle development, or by
enhancing the quality of the oocyte, embryo and their environment
(see reviews by Gulliver et al. [8] in sheep and cattle and byWathes
et al. [9,10] in mammals). Briefly, n-3 FA were found to be involved
in reproductive mechanisms through their essential role in the
composition of cell membranes, through their status of precursors
of prostaglandins and modulators of the expression patterns of
enzymes involved in prostaglandins metabolism and
steroidogenesis.

The effect of PUFA has been shown in animals using linseed.
Indeed, linseed oil contains about 55% of a-linolenic acid (ALA, 18:3
n-3) [11]. ALA can be converted into the eicosapentaenoic acid
(EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), the long
chain n-3 PUFA. Supplementing EL and encapsulated flaxseed to
dairy cows modified FA profiles of both the plasma and the ovarian
compartments (i.e., follicular fluid, granulosa cells, cumulus-oocyte
complexes) [12,13]. An increase in ALA and n-3 FA contents and a
decrease in n-6:n-3 ratio were observed. Thus, linseed supple-
mentation altered the FA profile in reproductive tissues and could
improve the uterine, the oocyte and the embryo environments.
Linseed also contains the plant lignan secoisolariciresinol digluco-
side (SDG), which is metabolized by the rumen flora to the
mammalian lignans enterolactone and enterodiol. This source of
phytoestrogens could alter dairy cow reproduction by acting as
estrogen-like molecules and interfering with endogenous sex
hormone metabolism [14e16].

Linseed supplementation to dairy cows influences the follicular
and corpus luteum developments. Unlike Petit and Twagiramungu
[17], Dirandeh et al. [18] and Jahani-Moghadam et al. [19] reported
a larger ovulatory follicle in cows supplemented with EL than with
protected palm oil. Besides, the corpus luteum was also larger
[17,18], but not in cows supplementedwith rolled linseed compared
with rolled sunflower seed [20]. The incidence of cystic follicles in
cows supplemented with EL was lower [18,19]. However, supple-
menting EL or other forms of linseed scarcely improved repro-
ductive performance in these experimental trials. The conception
and pregnancy rates were not altered by linseed supplementation
in comparison with saturated FA or n-6 FA supplementations
[17,19e23] even if Ambrose et al. [20] observed a trend towards an
increase of the conception rate at first artificial insemination (AI).
Pregnancy loss was reduced using whole linseed [17] or rolled
linseed [20]. Finally, the resumption of the ovarian activity, the
number of days open and the interval from calving to pregnancy
were not studied or cannot be interpreted due to the presence of
estrus synchronization programs in most of the experiments.

Overall the experimental trials provide insights about the effects
of PUFA on reproductive tissues but show limitations to explore the
effects on reproductive performance at cow level due to their lack
of statistical power [10]. Besides, difficulties are observed by re-
searchers when balancing the treatment groups for a trial studying
reproductive performance because of the numerous parameters
influencing the cow fertility. Thus, an epidemiological work
exploring the link between the exposition of dairy cows to EL and
their reproductive performance is needed while considering the
potential confounding factors under field conditions.

The objective of this epidemiological study was to quantify
under field conditions the average effects of supplementing EL to
dairy cows on different reproductive performance indicators,
namely time to first AI, the time from calving to conception and the
risk of a return to service.

2. Materials and methods

2.1. General study design and available data

A retrospective observational study was carried out based on
data from French dairy herds enrolled in the official Milk Recording
Scheme, where AI was used, and wherein EL was sometimes sup-
plemented to dairy cows between January 2008 and December
2015. The reproductive performances of cows inseminated during
periods of EL supplementation were compared to the ones of cows
inseminated during periods of EL non-supplementation within the
same herds. The deliveries of commercial feeds containing EL were
obtained from companies in France selling TRADILIN® products
(Tradi-Lin® Technology, Patent No. EP 1021 960 B1). TRADILIN®

products are almost the only feeds with EL sold in France. The
extrusion process of linseeds incorporated into these products is
protected by a European patent. This ensured that cows in the
control group were not supplemented with EL. Thus, the study
population consisted of 4979 French dairy herds having used feeds
with EL during the study period. However, the national herd
identification number was needed in order to link data from de-
liveries to data from the official Milk Recording Scheme and AI
records. The sample size was reduced to 2599 herds due to a lack of
national herd identification number, and then reduced to 2250
herds due to a lack of enrollment in the official Milk Recording
Scheme. Additionally, in order to obtain a sufficient number of test
days exposed to EL, only 1836 herds with aminimum of 4 deliveries
of feeds with EL were retained. The absence of fit between the
periods of EL delivery and milk recording data, as well as missing
data in deliveries reduced sample size to 1415 herds, and finally
absence of AI to 1397.

Reproductive events data obtained were calving ease, date and
rank of AI, bull breed, whether the semen was sexed or not.
Lactation data obtained were calving date, parity, date of test day
record, milk yield and milk content (fat, protein and somatic cell
count) at each test-day record. Animal data obtained were breed
and movements (i.e., date of arrival in and date of exit from the
herd).

2.2. Estimation of exposure to extruded linseed and determination
of exposure status

A cow daily exposure to EL for each delivery in each herd was
calculated from the duration of TRADILIN® products delivery dis-
tribution, the quantity delivered, the products EL content, and the
average number of lactating cows in the herd during the delivery
distribution. We considered that the beginning of EL supplemen-
tation to dairy cows in each herd occurred immediately the day
after the arrival date of feed in the farm. The daily number of cows
in each herd was calculated based onmovements data and test-day
records. We considered that all cows (i.e., whatever lactation stage
and milk yield) were supplemented with the same EL quantity
within a herd. When a farmer distributed several feeds containing
EL at the same time, herd daily exposures from each delivery were
added. To sum up, at this step we calculated a mean EL intake by
cow by herd for each day of the study period.

Exposure status was determinedwithin a herd at the AI level. An
AI was considered exposed only if the cowwas supplemented with
EL continuously from calving until 17 days after AI. The interval
from calving to 17 d after AI was established as a cut-off in order to
assess the potential benefits of EL supplementation since the early
postpartum period until the moment where the embryonic
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implantation is normally achieved. Consequently, lactations begun
before 1st January 2008 as well as AIs recorded after 14th
December 2015 were excluded because of incomplete exposure
sequences. Additionally, to reduce misclassification bias from po-
tential partial exposures, data from cows inconstantly supple-
mentedwith EL from calving to 17 days after AI were excluded from
the dataset. For each AI, an average daily EL exposure during the
interval between calving and 17 days after AI was calculated by
adding each daily exposure (from each day in this interval), esti-
mated as described above, divided by the number of days in this
interval. In practice the quantities of EL supplemented to cows are
based on the expectations of the farmer in terms of improvement of
milk production or its fatty acids profile according to specific
commercial recommendations. Therefore, the exposure variable
was categorized into several levels of EL daily intake: 0 (i.e., un-
exposed), [0e50], [50e300], [300e600] and [600e1500] g/cow/
d based on how EL is currently used in the field. We considered that
estimated EL daily intakes superior to 1500 g/cow/d (0.32% of final
AI database) were inaccurate and related lactations were removed.
Furthermore, in a previous work [24] this value was considered to
be the upper limit of the practical range of EL supplementation to
dairy cows (i.e., 600 g of fat from EL considering 40% of fat in EL). In
summary, the exposure variable accounted for both the dose and
period of exposure.

For each herd, all AIs recorded during the study period were
considered for the study. All the AIs that were considered not
exposed constituted the unexposed reference population. This
enabled the comparison of reproductive performance within the
same herd, thereby controlling for farming and climatic conditions
[25].

2.3. Definition of reproductive performance and data selection

The effect of EL on reproductive performancewas assessed using
several outcome variables.

Firstly, the occurrence of a newAI (i.e., a return-to-service (RTS))
after a first AI (dichotomous variable, yes/no) was considered. This
indicator was used in several studies quantifying the effect of a
disease on fertility or embryonic losses depending on the time
when the event was observed [26e30]. Three RTS were considered:

(i) an RTS between 18 and 26 days after an AI, which is likely to
be associated with fertilization failure or early embryo loss
(early RTS).

(ii) an RTS between 27 and 78 days after ab AI, which is likely to
be associated with a late embryo (after the stage of maternal
recognition of gestation) or fetal (after day 42 of gestation)
loss (delayed RTS).

(iii) an RTS between 18 and 78 days after service (overall RTS).

Late RTS (after 78 days post-service) was not studied as no
scientific literature pointed out a possible effect of EL on the risk of
abortion. Only RTS after first and second AI were considered.
Returns to service occurring before a given interval were excluded
for the assessment of the risk of RTS during this interval (i.e., RTS
before day 27 were excluded for assessing the risk of delayed RTS
after AI).

Secondly, the time from calving to first AI (DAI1; continuous
variable) was considered as a proxy to assess the resumption of
cyclicity postpartum and the ability of the cow to be inseminated.

Finally, the time from calving to conception (days to AI resulting
in fertilization of the oocyte DAIF; continuous variable) was
considered. The AI was considered successful when there was no
RTS between 18 and 78 days after AI. When the first AI and the AI
resulting in fertilization occurred respectively after 150 or 270 days,
DAI1 and DAIF were computed respectively as being 150 or 270
days.

Data from dairy herds with unusual management (i.e., very
small herds, extreme primiparous cows proportion, systematic
delayed first service, use of synchronization protocols) and sus-
pected to use a breeding bull, as well as data from cows with
missing data (i.e., herd identification, parity, test-day record,
insemination, calving date) were excluded [26,29,31]. Furthermore,
data from cows with events not considered plausible and extreme
data were excluded: calving to first test day record >75 d, DAI1
<21 d or >180 d, interval between two successive AI >200 d or <3 d,
AI to calving interval >297 d or <175 d, peak milk yield (expressed
as the maximum at the 3 first test-day records)< 10 kg/d, milk
protein content at the second test day record equal to 0. Classifi-
cation bias can occur when cows are culled because their preg-
nancy status is uncertain. Thus cows culled within 200 days after AI
were excluded from the analysis in order not to underestimate the
risk of RTS. Data from nulliparous cows were excluded because of
the lack of information about EL supplementation and so exposure
status during their pregnancy. Only data from Holstein cows were
included because of the strong effect of breed on reproductive
performance [32,33]. This data selection reduced sample size to
1096 herds.
2.4. Statistical models

The statistical unit to study RTS was the AI. The effect of EL
exposure on the risk of RTS was assessed using logistic mixed
regression model. To account for factors likely to influence the risk
of RTS, this association was adjusted for several independent var-
iables [26e29,31,34]: calving to AI interval (10 levels), year of AI (8
levels), month of AI (12 levels), rank of AI (1 or 2), semen from
Holstein bull (yes/no), semen sexing (yes/no and one accounting for
missing data), parity (4 levels), calving ease (4 levels from easy to
cesarian section and one accounting for missing data), peak milk
yield (7 levels), milk protein content at second test day record (7
levels), and geographical area (7 levels) (Suppl. Tables 4 and 5). A
herd random effect was also added in the model to take into ac-
count in particular diseases and feeding management differences
between herds:

Yijt � Bernoulli
�
pijt
�

ln

 
pijt

1� pijt

!
¼ aþ Xijtbþ nj

nj � Normal
�
0; s2

�

where Yijt ¼ 1 when an RTS occurred in interval t for a cow i in herd
j and 0 otherwise, a ¼ intercept, Xijt¼ matrix of predictors
including exposure status with b the vector of associated regression
parameters, yj ¼ herd j random effect.

Odds-ratios were converted into relative risks (RR) using the
formula from Beaudeau and Fourichon [35].

The statistical units to study respectively DAI1 and DAIF were
respectively the first AI and the successful AI. The effects of EL
exposure on the DAI1 and DAIF were assessed using multivariable
proportional hazards Cox models. The association between EL
exposure and each outcome was adjusted for the same factors used
to study RTS, except that the factors rank of AI, semen fromHolstein
bull, semen sexing and calving to AI interval for DAI1, the rank of AI
and calving to AI interval for DAIF, were obviously removed from
the models. A herd random effect (frailty term) assuming a gamma
distribution [36] was added to the models to take into account
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health and management differences between herds:
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where l0ðtÞ ¼ baseline hazard function, Zij ¼matrix of predictors
including exposure status with b the vector of associated regression
parameters, wj ¼ herd j random effect.

All statistical analyses were performed in R (version 3.3.2) [37]
using the function glmer from the package lme4 (version 1.1e12)
and the function coxph from the package survival (version 2.40e1).

3. Results

3.1. Descriptive results

The final sample was composed of 1096 herds, 158,125 cows,
and 423,605 AIs (Table 1). Almost half of the AIs were unexposed.
More than 78% of the exposed AIs were at levels [50e300] or
[300e600] g/cow/d whatever the reproductive outcome consid-
ered. Mean daily EL intake in exposed populationwas 337 (±239.4)
g/cow/d. Rates of early RTS, delayed RTS, and overall RTS were
respectively 22.6%, 33.3% and 48.4% in the reference population,
and respectively 24.0%, 33.2% and 49.2% in the whole exposed
population (Table 1). Calving-to-first AI interval and calving-to-
conception interval were respectively 91 (±28.2) d and 110
(±42.0) d in the reference population, and respectively 90 (±27.9)
d and 107 (±40.8) in the whole exposed population (Table 1).

3.2. Return rates were not associated with exposure to extruded
linseed

Overall RTS did not differ between the reference population and
the exposed population (Table 2). Very low level of EL exposure (i.e.,
<50 g/cow/d from calving to 17 days after AI) was not associated
with early or delayed RTS. Other levels of exposure to EL were
slightly associated with increased risk of early RTS (RR from 1.02 to
Table 1
Return-to-service (RTS) rates, time from calving to first AI (DAI1) and time from calving to
Holstein dairy herds during the study period 2008e2015 (n¼ 423,605 AI from 158,125 c

EL Exposure status1

Unexposed

Herds 1064
Cows 95,083
Total AI 226,795

EL (g/cow/d) Mean e

SE e

RTS rate (%)2

18e26 d 22.64a
26e78 d 33.33a
18e78 d 48.42a

Calving-to-first AI interval (d)2 n 147,377
Mean 91.27a
SE 0.07

Calving-to-conception interval (d)3 n 116,963
Mean 109.71a
SE 0.12

1Exposure status was defined by average daily intake of EL per cow per day during the
2Different lowercase letters indicate significant difference determined from Chi-square post
3Mean and SE were calculated including censored AI1 with their calving-to-first AI inter
4Mean and SE were calculated including censored AIF with their calving-to-conception
3�4Different lowercase letters indicate significant difference determined from one-way ANO
1.04) and with decreased risk of delayed RTS (RR from 0.95 to 0.96)
(Table 2). No clear dose-dependent relationships within EL expo-
sure levels were observed (Table 2).

3.3. Earlier days to first AI and to conception associated with
exposure to extruded linseed

Exposure to EL was associated with reduced DAI1 and reduced
DAIF (Table 3). Very low level of EL exposure was associated with
the highest reduction in DAI1 and DAIF (HR¼ 1.14 and HR¼ 1.19)
compared to other levels of exposure (Fig. 1 and Fig. 2).

3.4. Adjustment variables associated with reproductive
performance

The magnitude of the association between RTS and the adjust-
ment variables varied according to early or delayed RTS
(Suppl. Table 4), but not its direction (except for parity 3). Dystocia
was strongly associated with increased risk of early and delayed
RTS, as well as sexing semen and Holstein semen. As expected, the
increased calving-to-AI interval was positively associated with a
decreased risk of RTS, whereas increased peak milk yield was
positively associated with increased risk of RTS (Suppl. Table 4).
Increased peakmilk yield and decreasedMPC at 2nd test day record
were also associated with increased DAI1 and DAIF (Suppl. Table 5).
Strong associations of the dystocia with DAI1 and DAIF, and sexing
semen and Holstein bull with DAIF were also observed
(Suppl. Table 5). Finally, inseminating in spring and early summer
was associated with early and delayed RTS, as well as increased
days open (Suppl. Table 4, Table 5).

4. Discussion

This observational study is to our knowledge the first one
exploring the link between a feed supplementation and repro-
ductive performance of dairy cows based on a large dataset under
field conditions. This study provides further insight into supple-
menting EL on reproductive performance.

Exposure to EL was associated with a reduced DAIF through a
conception (DAIF) according to extruded linseed (EL) exposure status in 1096 French
ows).

[0e50] [50e300] [300e600] [600e1500]

255 915 699 372
7583 44,409 34,110 14,152
14,126 88,261 66,136 28,287

27.37a 175.99b 432.34c 771.86d
0.10 0.23 0.32 0.98

22.30b 23.87c 24.17d 24.62e
34.23b 33.33c 32.78d 33.11e
48.90b 49.25c 49.03d 49.58e

9528 58,853 43,597 18,593
88.44b 90.04c 90.89ad 90.53cd
0.28 0.11 0.13 0.20

7218 44,792 33,706 14,261
105.63b 106.74cbd 108.21e 107.33de
0.49 0.19 0.22 0.34

interval from calving to 17 days after AI.
hoc test.
val fixed at 150 days.
interval fixed at 270 days.
VA with Tukey's post hoc test.



Table 2
Relative risk of return-to-service (RTS) according to the extruded linseed exposure status in 1096 French Holstein dairy herds during the study period January 2008 to
December 2015 (n¼ 423,605 AI from 158,125 cows).

Extruded linseed exposure statusa Interval of return

18e26 d 27e78 d 18e78 d

RRb 95% CIc Pd RR 95% CI P RR 95% CI P

Unexposed 1 Refe 1 Ref 1 Ref
[0e50] 0.98 0.94; 1.02 0.202 0.99 0.95; 1.05 0.841 0.99 0.98; 1.01 0.366
[50e300] 1.02 1.00; 1.04 0.029 0.97 0.94; 0.99 0.004 0.99 0.98; 1.01 0.274
[300e600] 1.04 1.02; 1.06 <0.001 0.95 0.92; 0.98 <0.001 0.99 0.98; 1.01 0.443
[600e1500] 1.04 1.01; 1.07 0.013 0.96 0.92; 1.00 0.040 0.99 0.98; 1.02 0.691

Herd random effect variance and standard deviation were respectively 0.08 and 0.285, 0.07 and 0.260, 0.07 and 0.273 in models respectively studying interval of return 18 to
26, 27 to 78 and 18e78 days.

a Exposure status was defined by average daily intake of EL per cow per day during the interval from calving to 17 days after AI.
b RR¼ relative risk adjusted for calving-to-AI interval (10 levels), year of AI (8 levels), month of AI (12 levels), rank of AI (1 or 2), semen from Holstein bull (yes/no), semen

sexing (yes/no and missing data), parity (4 levels), difficulty of the last calving (5 levels including one for missing data), peak milk yield (7 levels), milk protein content at
second test day record (7 levels), geographical area (7 levels) and herd random effect.

c CI¼ confidence interval.
d P¼ P-value.
e Ref¼ Reference.
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reduced DAI1. Few of the experimental studies performed so far
were adapted to study the effect of linseed on DAI1 and DAIF
because of estrus synchronization protocols and/or fat supple-
mentation initiated several weeks postpartum. The direction of the
effect is consistent with the one found in a previous experimental
trial where a reduction of 6.5 days in DAI1 was observed immedi-
ately postpartum until 40d after calving in EL supplemented group
(PUFA 4.5% DM) compared to protected palm oil supplemented
group (PUFA 1.6% DM) [19]. Surprisingly, no effect of EL supple-
mentation on overall RTS was observed. Decreased risk of delayed
RTS was offset by increased risk of early RTS. A decreased risk of
delayed RTS is consistent with reduced pregnancy loss observed in
cows supplemented with whole linseed (PUFA 10.4% DM) [17] or
rolled linseed (PUFA 9% DM) [20]. Risk of early RTS reflects as well
non fertilization of oocyte and early embryo mortality (before
15e17 days after AI), and so oocyte and embryo quality. Zachut et al.
[12] and Moallem et al. [38] observed an improvement in embryo
cleavage rate with a diet supplemented with encapsulated linseed
relative to a diet supplementedwith saturated FA but not relative to
a diet supplemented with different sources of UFA such as sun-
flower oil and fish oil. Besides, Thangavelu et al. [39] found that a
diet supplemented with sunflower oil or linseed enhanced em-
bryonic development relative to a diet enriched in saturated FA.
However, Petit et al. [40] found a decreased embryo quality with
whole linseed supplementation relative to a commercial product
rich in saturated and oleic FA supplementation. Evaluating and
Table 3
Hazard ratios of the time from calving to first AI (DAI1) and the time from calving to concep
in 1096 French Holstein dairy herds during the study period January 2008 to Decembe
129,215 cows).

Extruded linseed exposure statusa DAI1 (d)

HRb 95% CIc

Unexposed 1 Refe

[0e50] 1.14 1.11; 1.17
[50e300] 1.06 1.04; 1.07
[300e600] 1.06 1.05; 1.08
[600e1500] 1.07 1.05; 1.09

Number of events was 263,859 and 216,066 respectively for DAI1 and DAIF. Herd rando
a Exposure status was defined by average daily intake of EL per cow per day during th
b HR¼ hazard ratio adjusted for year of AI (8 levels), month of AI (12 levels), parity (4 le

yield (7 levels), milk protein content at second test day record (7 levels), geographical are
sexing (yes/no and missing data) for DAIF.

c CI¼ confidence interval.
d P¼ P-value.
e Ref¼ Reference.
comparing such studies is complex because of substantial dispar-
ities between precise timing, duration, amount and nature of di-
etary intervention as mentioned by Leroy et al. [6] in its review on
the relationship between dietary fat and oocyte and embryo
quality. Besides, quantities of EL observed under field conditions
were far lower than in these cited experimental trials.

In our study, overall mean of EL supplementation under field
conditions was quite low: EL was supplemented at an average of
337 (±239.4) g/cow/d compared to 1181 (±742.5) g/cow/d in 29
treatment diets from 21 trials studying EL and production perfor-
mance [24], and to 826 g/cow/d, 1700 g/cow/d and 1745 g/cow/d in
three trials studying EL and reproductive performance [13,19,21].
Thus, we lack the knowledge to comment on the largest magnitude
of the association between DAI1 or DIAF and EL exposure with the
lowest intake of EL (<50 g of EL, <11 g of ALA). Such a low level of
ALA supplementation was not studied previously in the literature,
but two studies found huge beneficial effects of low intakes of other
PUFA. Sinedino et al. [41] in a study conducted with 739 lactating
cows showed a very strong effect of supplementing an algae
product containing 10 g of DHA on reproductive performance with
a reduction in the days-to-pregnancy interval of 22 days. De Veth
et al. [42] in a multi-study analysis, predicted an optimal effect of
conjugated linoleic acid on time to first ovulation (�8 d) and time to
conception (�34 d) at a quantity from 8 to 10 g/d. In light of these
elements, there is a need for experimental trials to focus on EL
supplementation in a range observed under field conditions to
tion (DAIF) expressed in days according to the extruded linseed (EL) exposure status
r 2015 (respectively, n¼ 277,948 AI1 from 156,203 cows and n¼ 216,940 AIF from

DAIF (d)

Pd HR 95% CI P

1 Ref
<0.001 1.19 1.15; 1.23 <0.001
<0.001 1.10 1.08; 1.11 <0.001
<0.001 1.08 1.06; 1.10 <0.001
<0.001 1.11 1.08; 1.14 <0.001

m effect variance was respectively 0.62 and 0.28.
e interval from calving to 17 days after AI.
vels), difficulty of the last calving (5 levels including one for missing data), peak milk
a (7 levels) and a herd random effect, plus semen from Holstein bull (yes/no), semen



Fig. 1. Cumulative proportions of first AI across the time from calving to first AI (DAI1) according to the extruded linseed (EL) exposure status in 1096 French Holstein dairy herds
during the study period January 2008 to December 2015 (n¼ 277,948 AI1 from 156,203 cows fixed at 150 days).
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strengthen our results obtained with low EL supplementation.
Our study was, to our knowledge, the first one exploring a dose-

dependent association of reproductive performance with EL or n-3
FA. In the present study, the dose-dependent relationship was far
from being linear: no effect was demonstrated on the risk of RTS
and a quite constant positive effect was observed on DAI1 and DAIF.
Besides, contrary to other exposure levels, the lowest level of EL
intake was not associated with early and delayed RTS, whereas its
association with reduced DAI1 or DAIF was of larger magnitude
than other exposure levels. Yet, linear dose-dependent associations
between intake of EL and other dairy cows production traits were
reported: milk FA profile [24], enteric methane emission [43], and
milk yield and milk contents (Meignan et al., unpublished data).
Interestingly, this latter study was based on the same initial dataset
than the one used in the present study. Estimated daily milk yield
increased with increased estimated EL daily intake compared to the
daily milk yield of the reference population:
respectively þ0.00, þ0.59, þ0.90 and þ 1.13 kg/d with an EL intake
of [0e50], [50e300], [300e600] and [600e1500] g/cow/d consid-
ering a second parity Holstein cow. Milk yield and negative energy
balance (NEB) are known to negatively influence the return to
ovarian cyclicity and the estrous behavior [44e46], and the oocyte
and embryo quality [47]. Therefore, milk yield could act as a con-
founding factor and/or an explanatory factor on the association
between EL exposure and reproductive performances. Here, the
estimates of reproductive performances were adjusted for peak
milk yield in order to take into account both milk yield and level of
NEB. High peak milk yield was associated with an increased risk of
overall RTS and increased DAI1 and DAIF. However, the way we
adjusted for milk yield (using a discrete variable with categories of
5kg-range) did not allow to fully account for the concomitant as-
sociation between milk yield and EL supplementation (of
0.6e1.1 kg/d) while estimating the effects on reproductive perfor-
mances. Another explanation for this non-linear effect of the EL
supplementation could be that the antagonistic biological effect of
PUFA depending on their concentration. For example, long-chain n-
3 FA could act rather as pro- or anti-oxidant agents depending on
the level used [48]. Finally, we have to keep in mind that EL con-
tains not only PUFA, but also phytoestrogens that could interfere
with the reproductive function [14e16].

This retrospective observational study presented different
strengths and weaknesses. To adequately detect even small effects
of a practical range of EL supplementation on reproductive per-
formance, the present study was designed to be carried out on a
large dataset. The reference population was composed of AIs
recorded in herds that have been supplemented with EL, but during
periods of EL non-supplementation, in order to limit potential
confounding factors due to different herd managements between
herds. Nevertheless, the within-herd management may have
evolved during this long study period. Therefore, a random herd
effect was added to account for possible disparities between herds.

In this study the true intake of EL for each cow could have been
under or overestimated as we hypothesized that all lactating cows
within a herd were supplemented with the same quantity of EL
whatever their days in milk. In practice, cows in late lactation are
less likely to be fed as much EL than cows in early and mid-



Fig. 2. Cumulative proportions of first AI across time from calving to conception (DAIF) according to the extruded linseed (EL) exposure status in 1096 French Holstein dairy herds
during the study period January 2008 to December 2015 (n¼ 216,940 AIF from 129,215 cows.
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lactation. Therefore, to minimize this misclassification bias,
different exposure levels with broad ranges were defined, so that a
cowwas unlikely changing between two categories during the time
sequence comprised in the IA studied. In addition, as the results
show an absence of dose-dependent effect of EL on reproductive
performance, the misclassification bias within the exposure levels
did not affect our results.

To reduce potential intake-related bias, a prospective study
designed to record diet composition could increase precision on EL
exposure. Likewise, biomarkers already implemented in human
nutritional epidemiological studies such as the milk ALA content
could be used to enhance the precision of the exposure intake
measures [49,50]. However, the milk ALA content is closely
dependent on ruminal biohydrogenation and modulated by other
dietary components as grass or alfalfa [51] and its measurement by
mid-infrared spectroscopy still lacking precision [52,53]. Therefore,
the current options for increasing reliability on EL exposure are
represented by prospective designs which may be difficult to carry
out because of their cost and lack of practical feasibility.
5. Conclusions

Under field conditions, supplementing EL, even at low level, to
dairy cows was associated with a reduced number of days to first AI
and days to conception but was not associated with overall risk of
return-to-service. To our knowledge, this is the first time that an
association between cow nutrition and reproductive performances
was assessed by a large-scale retrospective observational study.
Further experimental trials using low levels of EL and at proper
timing are still needed to fully understand underlying biological
mechanisms associated with EL compounds (ALA, phytoestrogens,
antioxidants) and dairy cow reproduction.
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